Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617332

RESUMO

Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of type IV pilus motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. P. aeruginosa reduced invasion leads to the formation of denser and thicker S. aureus colonies with significantly increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate the effective treatment of infections. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies build on our understanding of how P. aeruginosa type IV pili-mediated interspecies chemotaxis mediates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities.

2.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328067

RESUMO

Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). Some QS-regulated phenotypes ( e.g. , secreted enzymes, chelators), are public goods exploitable by cells that stop producing them. We uncovered a phenomenon in which Vibrio cells optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically 'locked' at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating-mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). Methionine/THF synthesis genes are repressed at low cell density when glucose is plentiful and are de-repressed by LuxR at high cell density as glucose becomes limiting. In mixed cultures, QS mutant strains initially co-exist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links private and public goods within the QS regulon, preventing accumulation of QS-defective mutants.

3.
mSystems ; 9(3): e0117723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376179

RESUMO

Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE: There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.


Assuntos
Bacteriófagos , Bacteriófagos/fisiologia , Bactérias , Escherichia coli/fisiologia , Fenômenos Fisiológicos Bacterianos , Simbiose
4.
bioRxiv ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38187755

RESUMO

Bacteria form groups comprised of cells and secreted adhesive matrix that controls their spatial organization. These groups - termed biofilms - can act as refuges from environmental disturbance and from biotic threats, including phages. Despite the ubiquity of temperate phages and bacterial biofilms, temperate phage propagation within biofilms has never been characterized on multicellular spatial scales. Here, we leverage several approaches to track temperate phages and distinguish between lytic and lysogenic infections. We determine that lysogeny within E. coli biofilms most often occurs within a predictable region of cell group architecture. Because lysogens are generally found on the periphery of large groups, where lytic viral activity also reduces local structural integrity, lysogens are predisposed to disperse and are over-represented in biofilms formed downstream of the original biofilm-phage system. Comparing our results with those for virulent phages reveals that the temperate phages possess previously unknown advantages for propagation in architecturally heterogeneous biofilm communities.

5.
Nat Ecol Evol ; 7(12): 2092-2107, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884689

RESUMO

Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of great importance; however, knowledge of the biogeographical and ecological relationships between physically interacting taxa is limited. Interbacterial antagonism may play an important role in gut community dynamics, yet the conditions under which antagonistic behaviour is favoured or disfavoured by selection in the gut are not well understood. Here, using genomics, we show that a species-specific type VI secretion system (T6SS) repeatedly acquires inactivating mutations in Bacteroides fragilis in the human gut. This result implies a fitness cost to the T6SS, but we could not identify laboratory conditions under which such a cost manifests. Strikingly, experiments in mice illustrate that the T6SS can be favoured or disfavoured in the gut depending on the strains and species in the surrounding community and their susceptibility to T6SS antagonism. We use ecological modelling to explore the conditions that could underlie these results and find that community spatial structure modulates interaction patterns among bacteria, thereby modulating the costs and benefits of T6SS activity. Our findings point towards new integrative models for interrogating the evolutionary dynamics of type VI secretion and other modes of antagonistic interaction in microbiomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Proteínas de Bactérias/genética , Bactérias/genética , Microbioma Gastrointestinal/genética , Dinâmica Populacional
6.
Mol Microbiol ; 119(6): 659-676, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066636

RESUMO

Bacteria often grow into matrix-encased three-dimensional (3D) biofilm communities, which can be imaged at cellular resolution using confocal microscopy. From these 3D images, measurements of single-cell properties with high spatiotemporal resolution are required to investigate cellular heterogeneity and dynamical processes inside biofilms. However, the required measurements rely on the automated segmentation of bacterial cells in 3D images, which is a technical challenge. To improve the accuracy of single-cell segmentation in 3D biofilms, we first evaluated recent classical and deep learning segmentation algorithms. We then extended StarDist, a state-of-the-art deep learning algorithm, by optimizing the post-processing for bacteria, which resulted in the most accurate segmentation results for biofilms among all investigated algorithms. To generate the large 3D training dataset required for deep learning, we developed an iterative process of automated segmentation followed by semi-manual correction, resulting in >18,000 annotated Vibrio cholerae cells in 3D images. We demonstrate that this large training dataset and the neural network with optimized post-processing yield accurate segmentation results for biofilms of different species and on biofilm images from different microscopes. Finally, we used the accurate single-cell segmentation results to track cell lineages in biofilms and to perform spatiotemporal measurements of single-cell growth rates during biofilm development.


Assuntos
Aprendizado Profundo , Linhagem da Célula , Imageamento Tridimensional/métodos , Algoritmos , Biofilmes , Bactérias , Processamento de Imagem Assistida por Computador/métodos
7.
Nat Rev Microbiol ; 21(8): 519-534, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37095190

RESUMO

Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.


Assuntos
Antibacterianos , Bacteriófagos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Bactérias/genética , Bacteriófagos/genética
8.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865186

RESUMO

Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of high importance as progress towards therapeutic modulation of the microbiota advances. However, given the inaccessibility of the gastrointestinal tract, our knowledge of the biogeographical and ecological relationships between physically interacting taxa has been limited to date. It has been suggested that interbacterial antagonism plays an important role in gut community dynamics, but in practice the conditions under which antagonistic behavior is favored or disfavored by selection in the gut environment are not well known. Here, using phylogenomics of bacterial isolate genomes and analysis of infant and adult fecal metagenomes, we show that the contact-dependent type VI secretion system (T6SS) is repeatedly lost from the genomes of Bacteroides fragilis in adults compare to infants. Although this result implies a significant fitness cost to the T6SS, but we could not identify in vitro conditions under which such a cost manifests. Strikingly, however, experiments in mice illustrated that the B. fragilis T6SS can be favored or disfavored in the gut environment, depending on the strains and species in the surrounding community and their susceptibility to T6SS antagonism. We use a variety of ecological modeling techniques to explore the possible local community structuring conditions that could underlie the results of our larger scale phylogenomic and mouse gut experimental approaches. The models illustrate robustly that the pattern of local community structuring in space can modulate the extent of interactions between T6SS-producing, sensitive, and resistant bacteria, which in turn control the balance of fitness costs and benefits of performing contact-dependent antagonistic behavior. Taken together, our genomic analyses, in vivo studies, and ecological theory point toward new integrative models for interrogating the evolutionary dynamics of type VI secretion and other predominant modes of antagonistic interaction in diverse microbiomes.

9.
Proc Natl Acad Sci U S A ; 120(6): e2212650120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730197

RESUMO

Biofilm formation, including adherence to surfaces and secretion of extracellular matrix, is common in the microbial world, but we often do not know how interaction at the cellular spatial scale translates to higher-order biofilm community ecology. Here we explore an especially understudied element of biofilm ecology, namely predation by the bacterium Bdellovibrio bacteriovorus. This predator can kill and consume many different Gram-negative bacteria, including Vibrio cholerae and Escherichia coli. V. cholerae can protect itself from predation within densely packed biofilm structures that it creates, whereas E. coli biofilms are highly susceptible to B. bacteriovorus. We explore how predator-prey dynamics change when V. cholerae and E. coli are growing in biofilms together. We find that in dual-species prey biofilms, E. coli survival under B. bacteriovorus predation increases, whereas V. cholerae survival decreases. E. coli benefits from predator protection when it becomes embedded within expanding groups of highly packed V. cholerae. But we also find that the ordered, highly packed, and clonal biofilm structure of V. cholerae can be disrupted if V. cholerae cells are directly adjacent to E. coli cells at the start of biofilm growth. When this occurs, the two species become intermixed, and the resulting disordered cell groups do not block predator entry. Because biofilm cell group structure depends on initial cell distributions at the start of prey biofilm growth, the surface colonization dynamics have a dramatic impact on the eventual multispecies biofilm architecture, which in turn determines to what extent both species survive exposure to B. bacteriovorus.


Assuntos
Bdellovibrio bacteriovorus , Escherichia coli , Animais , Comportamento Predatório , Biofilmes , Ecologia
10.
PLoS Biol ; 20(12): e3001913, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548227

RESUMO

Numerous ecological interactions among microbes-for example, competition for space and resources, or interaction among phages and their bacterial hosts-are likely to occur simultaneously in multispecies biofilm communities. While biofilms formed by just a single species occur, multispecies biofilms are thought to be more typical of microbial communities in the natural environment. Previous work has shown that multispecies biofilms can increase, decrease, or have no measurable impact on phage exposure of a host bacterium living alongside another species that the phages cannot target. The reasons underlying this variability are not well understood, and how phage-host encounters change within multispecies biofilms remains mostly unexplored at the cellular spatial scale. Here, we study how the cellular scale architecture of model 2-species biofilms impacts cell-cell and cell-phage interactions controlling larger scale population and community dynamics. Our system consists of dual culture biofilms of Escherichia coli and Vibrio cholerae under exposure to T7 phages, which we study using microfluidic culture, high-resolution confocal microscopy imaging, and detailed image analysis. As shown previously, sufficiently mature biofilms of E. coli can protect themselves from phage exposure via their curli matrix. Before this stage of biofilm structural maturity, E. coli is highly susceptible to phages; however, we show that these bacteria can gain lasting protection against phage exposure if they have become embedded in the bottom layers of highly packed groups of V. cholerae in co-culture. This protection, in turn, is dependent on the cell packing architecture controlled by V. cholerae biofilm matrix secretion. In this manner, E. coli cells that are otherwise susceptible to phage-mediated killing can survive phage exposure in the absence of de novo resistance evolution. While co-culture biofilm formation with V. cholerae can confer phage protection to E. coli, it comes at the cost of competing with V. cholerae and a disruption of normal curli-mediated protection for E. coli even in dual species biofilms grown over long time scales. This work highlights the critical importance of studying multispecies biofilm architecture and its influence on the community dynamics of bacteria and phages.


Assuntos
Bacteriófagos , Vibrio cholerae , Escherichia coli , Biofilmes , Matriz Extracelular de Substâncias Poliméricas
11.
Nat Commun ; 13(1): 7585, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482060

RESUMO

Small regulatory RNAs (sRNAs) acting in concert with the RNA chaperone Hfq are prevalent in many bacteria and typically act by base-pairing with multiple target transcripts. In the human pathogen Vibrio cholerae, sRNAs play roles in various processes including antibiotic tolerance, competence, and quorum sensing (QS). Here, we use RIL-seq (RNA-interaction-by-ligation-and-sequencing) to identify Hfq-interacting sRNAs and their targets in V. cholerae. We find hundreds of sRNA-mRNA interactions, as well as RNA duplexes formed between two sRNA regulators. Further analysis of these duplexes identifies an RNA sponge, termed QrrX, that base-pairs with and inactivates the Qrr1-4 sRNAs, which are known to modulate the QS pathway. Transcription of qrrX is activated by QrrT, a previously uncharacterized LysR-type transcriptional regulator. Our results indicate that QrrX and QrrT are required for rapid conversion from individual to community behaviours in V. cholerae.


Assuntos
Vibrio cholerae , Humanos , Vibrio cholerae/genética , RNA
12.
mBio ; 13(4): e0188522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35880882

RESUMO

The human pathogen Vibrio cholerae grows as biofilms, communities of cells encased in an extracellular matrix. When growing in biofilms, cells compete for resources and space. One common competitive mechanism among Gram-negative bacteria is the type six secretion system (T6SS), which can deliver toxic effector proteins into a diverse group of target cells, including other bacteria, phagocytic amoebas, and human macrophages. The response regulator VxrB positively regulates both biofilm matrix and T6SS gene expression. Here, we directly observe T6SS activity within biofilms, which results in improved competition with strains lacking the T6SS. VxrB significantly contributes to both attack and defense via T6SS, while also influencing competition via regulation of biofilm matrix production. We further determined that both Vibrio polysaccharide (VPS) and the biofilm matrix protein RbmA can protect cells from T6SS attack within mature biofilms. By varying the spatial mixing of predator and prey cells in biofilms, we show that a high degree of mixing favors T6SS predator strains and that the presence of extracellular DNA in V. cholerae biofilms is a signature of T6SS killing. VxrB therefore regulates both T6SS attack and matrix-based T6SS defense, to control antagonistic interactions and competition outcomes during mixed-strain biofilm formation. IMPORTANCE This work demonstrates that the Vibrio cholerae type six secretion system (T6SS) can actively kill prey strains within the interior of biofilm populations with substantial impact on population dynamics. We additionally show that the response regulator VxrB contributes to both T6SS killing and protection from T6SS killing within biofilms. Components of the biofilm matrix and the degree of spatial mixing among strains also strongly influence T6SS competition dynamics. T6SS killing within biofilms results in increased localized release of extracellular DNA, which serves as an additional matrix component. These findings collectively demonstrate that T6SS killing can contribute to competition within biofilms and that this competition depends on key regulators, matrix components, and the extent of spatial population mixture during biofilm growth.


Assuntos
Sistemas de Secreção Tipo VI , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Matriz Extracelular/metabolismo , Humanos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(27): e2123469119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771939

RESUMO

Biofilm formation is an important and ubiquitous mode of growth among bacteria. Central to the evolutionary advantage of biofilm formation is cell-cell and cell-surface adhesion achieved by a variety of factors, some of which are diffusible compounds that may operate as classical public goods-factors that are costly to produce but may benefit other cells. An outstanding question is how diffusible matrix production, in general, can be stable over evolutionary timescales. In this work, using Vibrio cholerae as a model, we show that shared diffusible biofilm matrix proteins are indeed susceptible to cheater exploitation and that the evolutionary stability of producing these matrix components fundamentally depends on biofilm spatial structure, intrinsic sharing mechanisms of these components, and flow conditions in the environment. We further show that exploitation of diffusible adhesion proteins is localized within a well-defined spatial range around cell clusters that produce them. Based on this exploitation range and the spatial distribution of cell clusters, we constructed a model of costly diffusible matrix production and related these length scales to the relatedness coefficient in social evolution theory. Our results show that production of diffusible biofilm matrix components is evolutionarily stable under conditions consistent with natural biofilm habitats and host environments. We expect the mechanisms revealed in this study to be relevant to other secreted factors that operate as cooperative public goods in bacterial communities and the concept of exploitation range and the associated analysis tools to be generally applicable.


Assuntos
Bactérias , Matriz Extracelular de Substâncias Poliméricas , Evolução Social , Bactérias/crescimento & desenvolvimento , Modelos Biológicos , Vibrio cholerae
14.
J Orthop Trauma ; 36(6): 309-316, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35703847

RESUMO

OBJECTIVES: Describe co-occurrence or clustering of microbial taxa in fracture-related infections to inform further exploration of infection-related interactions among them. DESIGN: Retrospective review. SETTING: Level 1 trauma center. PATIENTS/PARTICIPANTS: Four hundred twenty-three patients requiring surgical intervention for deep surgical site infection between January 2006 and December 2015. INTERVENTION: None. MAIN OUTCOME MEASUREMENT: Connection between microbial taxa. RESULTS: Methicillin-resistant Staphylococcus aureus, methicillin-sensitive Staphylococcus aureus, and coagulase-negative Staphylococcus represented the majority of monomicrobial observations (71%). Gram-negative rods, gram-positive rods, and anaerobes presented more frequently in polymicrobial infections. Enterobacter, vancomycin-sensitive Enterococcus, and Pseudomonas are present in polymicrobial infections with the highest frequencies and represent the top 3 most important nodes within the microorganism framework, with the highest network centrality scores. CONCLUSIONS: The present study indicates that there are common microbial taxa (Enterobacter, Enterococcus, and Pseudomonas) that tend to co-occur with other microbes greater than 75% of the time. These commonly co-occurring microbes have demonstrated interactive relationships in other disease pathologies, suggesting that there may be similar important interactions in fracture-related infections. It is possible that these microbial communities play a role in the persistently high failure rate associated with management of infection after trauma. Future studies are needed to study the intermicrobial interactions that explain the frequency at which taxa co-occur. Understanding and potentially disrupting these intermicrobial relationships could inform improvements in the treatment of established infections and in the prevention of infection in high-risk patients. LEVEL OF EVIDENCE: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Coinfecção , Fraturas Ósseas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Coinfecção/tratamento farmacológico , Fraturas Ósseas/cirurgia , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Infecções Estafilocócicas/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico
15.
Annu Rev Microbiol ; 76: 503-532, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671532

RESUMO

Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide.


Assuntos
Biofilmes , Vibrio cholerae , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/fisiologia
16.
mBio ; 13(2): e0293321, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35254131

RESUMO

Alanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment, Aspergillus fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A. fumigatus biofilm physiology. Loss of alaA, or its catalytic activity, results in decreased adherence of biofilms through a defect in the maturation of the extracellular matrix polysaccharide galactosaminogalactan (GAG). Additionally, exposure of cell wall polysaccharides is also impacted by loss of alaA, and loss of AlaA catalytic activity confers increased biofilm susceptibility to echinocandin treatment, which is correlated with enhanced fungicidal activity. The increase in echinocandin susceptibility is specific to biofilms, and chemical inhibition of alaA by the alanine aminotransferase inhibitor ß-chloro-l-alanine is sufficient to sensitize A. fumigatus biofilms to echinocandin treatment. Finally, loss of alaA increases susceptibility of A. fumigatus to in vivo echinocandin treatment in a murine model of invasive pulmonary aspergillosis. Our results provide insight into the interplay of metabolism, biofilm formation, and antifungal drug resistance in A. fumigatus and describe a mechanism of increasing susceptibility of A. fumigatus biofilms to the echinocandin class of antifungal drugs. IMPORTANCE Aspergillus fumigatus is a ubiquitous filamentous fungus that causes an array of diseases depending on the immune status of an individual, collectively termed aspergillosis. Antifungal therapy for invasive pulmonary aspergillosis (IPA) or chronic pulmonary aspergillosis (CPA) is limited and too often ineffective. This is in part due to A. fumigatus biofilm formation within the infection environment and the resulting emergent properties, particularly increased antifungal resistance. Thus, insights into biofilm formation and mechanisms driving increased antifungal drug resistance are critical for improving existing therapeutic strategies and development of novel antifungals. In this work, we describe an unexpected observation where alanine metabolism, via the alanine aminotransferase AlaA, is required for several aspects of A. fumigatus biofilm physiology, including resistance of A. fumigatus biofilms to the echinocandin class of antifungal drugs. Importantly, we observed that chemical inhibition of alanine aminotransferases is sufficient to increase echinocandin susceptibility and that loss of alaA increases susceptibility to echinocandin treatment in a murine model of IPA. AlaA is the first gene discovered in A. fumigatus that confers resistance to an antifungal drug specifically in a biofilm context.


Assuntos
Aspergillus fumigatus , Aspergilose Pulmonar Invasiva , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Alanina Transaminase/metabolismo , Alanina Transaminase/farmacologia , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Modelos Animais de Doenças , Equinocandinas/metabolismo , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Mamíferos , Camundongos , Oxigênio/metabolismo
17.
J Bacteriol ; 203(22): e0026521, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34516283

RESUMO

Pseudomonas aeruginosa strains PA14 and PAO1 are among the two best-characterized model organisms used to study the mechanisms of biofilm formation while also representing two distinct lineages of P. aeruginosa. Previous work has shown that PA14 and PAO1 use different strategies for surface colonization; they also have different extracellular matrix composition and different propensities to disperse from biofilms back into the planktonic phase surrounding them. We expand on this work here by exploring the consequences of these different biofilm production strategies during direct competition. Using differentially labeled strains and microfluidic culture methods, we show that PAO1 can outcompete PA14 in direct competition during early colonization and subsequent biofilm growth, that they can do so in constant and perturbed environments, and that this advantage is specific to biofilm growth and requires production of the Psl polysaccharide. In contrast, P. aeruginosa PA14 is better able to invade preformed biofilms and is more inclined to remain surface-associated under starvation conditions. These data together suggest that while P. aeruginosa PAO1 and PA14 are both able to effectively colonize surfaces, they do so in different ways that are advantageous under different environmental settings. IMPORTANCE Recent studies indicate that P. aeruginosa PAO1 and PA14 use distinct strategies to initiate biofilm formation. We investigated whether their respective colonization and matrix secretion strategies impact their ability to compete under different biofilm-forming regimes. Our work shows that these different strategies do indeed impact how these strains fair in direct competition: PAO1 dominates during colonization of a naive surface, while PA14 is more effective in colonizing a preformed biofilm. These data suggest that even for very similar microbes there can be distinct strategies to successfully colonize and persist on surfaces during the biofilm life cycle.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/fisiologia , Morte Celular , Dispositivos Lab-On-A-Chip , Propriedades de Superfície
18.
mBio ; 12(5): e0176321, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544277

RESUMO

A recent workshop titled "Developing Models to Study Polymicrobial Infections," sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored the development of new models to study the polymicrobial infections associated with the airways of persons with cystic fibrosis (CF). The workshop gathered 35+ investigators over two virtual sessions. Here, we present the findings of this workshop, summarize some of the challenges involved with developing such models, and suggest three frameworks to tackle this complex problem. The frameworks proposed here, we believe, could be generally useful in developing new model systems for other infectious diseases. Developing and validating new approaches to study the complex polymicrobial communities in the CF airway could open windows to new therapeutics to treat these recalcitrant infections, as well as uncovering organizing principles applicable to chronic polymicrobial infections more generally.


Assuntos
Coinfecção/complicações , Fibrose Cística/complicações , Modelos Biológicos , Infecção Persistente/complicações , Animais , Biofilmes , Humanos , Interações Microbianas , Sistema Respiratório/microbiologia
19.
Elife ; 102021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34240700

RESUMO

Bacteriophages can be trapped in the matrix of bacterial biofilms, such that the cells inside them are protected. It is not known whether these phages are still infectious and whether they pose a threat to newly arriving bacteria. Here, we address these questions using Escherichia coli and its lytic phage T7. Prior work has demonstrated that T7 phages are bound in the outermost curli polymer layers of the E. coli biofilm matrix. We show that these phages do remain viable and can kill colonizing cells that are T7-susceptible. If cells colonize a resident biofilm before phages do, we find that they can still be killed by phage exposure if it occurs soon thereafter. However, if colonizing cells are present on the biofilm long enough before phage exposure, they gain phage protection via envelopment within curli-producing clusters of the resident biofilm cells.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/virologia , Bacteriófagos/fisiologia , Biofilmes , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Escherichia coli/virologia
20.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260396

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that forms antibiotic-resistant biofilms, which facilitate chronic infections in immunocompromised hosts. We have previously shown that P. aeruginosa secretes outer-membrane vesicles that deliver a small RNA to human airway epithelial cells (AECs), in which it suppresses the innate immune response. Here, we demonstrate that interdomain communication through small RNA-containing membrane vesicles is bidirectional and that microRNAs (miRNAs) in extracellular vesicles (EVs) secreted by human AECs regulate protein expression, antibiotic sensitivity, and biofilm formation by P. aeruginosa Specifically, human EVs deliver miRNA let-7b-5p to P. aeruginosa, which systematically decreases the abundance of proteins essential for biofilm formation, including PpkA and ClpV1-3, and increases the ability of beta-lactam antibiotics to reduce biofilm formation by targeting the beta-lactamase AmpC. Let-7b-5p is bioinformatically predicted to target not only PpkA, ClpV1, and AmpC in P. aeruginosa but also the corresponding orthologs in Burkholderia cenocepacia, another notorious opportunistic lung pathogen, suggesting that the ability of let-7b-5p to reduce biofilm formation and increase beta-lactam sensitivity is not limited to P. aeruginosa Here, we provide direct evidence for transfer of miRNAs in EVs secreted by eukaryotic cells to a prokaryote, resulting in subsequent phenotypic alterations in the prokaryote as a result of this interdomain communication. Since let-7-family miRNAs are in clinical trials to reduce inflammation and because chronic P. aeruginosa lung infections are associated with a hyperinflammatory state, treatment with let-7b-5p and a beta-lactam antibiotic in nanoparticles or EVs may benefit patients with antibiotic-resistant P. aeruginosa infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Pseudomonas aeruginosa/fisiologia , Antagomirs/farmacologia , Aztreonam/farmacologia , Biofilmes/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Plâncton/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...